WHAT YOU NEED TO KNOW ABOUT TELOMERES !

gorgrous40plus telomeres

What’s a Telomere and why they are key when talking about Aging !!

I always emphasize and believed that our beauty is to a large extent a result of our body condition. It doesn’t matter how much we look after our skin, how much we spend in specific products but if we don’t take care of our main organ, our body, we won’t achieve the results we expect and that we aim once we start the aging process.

I came across a very interesting study that I would like to share with you. Once we understand the importance of telomeres in our system we can adapt our diets and supplement intake accordingly. It would be great to hear your thoughts and experience with this – please share it in this blog!

Please read below.

Source: http://learn.genetics.utah.edu

Are Telomeres the Key to Aging ?

Inside the nucleus of a cell, our genes are arranged along twisted, double-stranded molecules of DNA called chromosomes. At the ends of the chromosomes are stretches of DNA called telomeres, which protect our genetic data, make it possible for cells to divide, and hold some secrets to how we age and get cancer.

Telomeres have been compared with the plastic tips on shoelaces, because they keep chromosome ends from fraying and sticking to each other, which would destroy or scramble an organism’s genetic information.

Yet, each time a cell divides, the telomeres get shorter. When they get too short, the cell can no longer divide; it becomes inactive or “senescent” or it dies. This shortening process is associated with aging, cancer, and a higher risk of death. So telomeres also have been compared with a bomb fuse.

What are telomeres?

What are Telomeres

 

Like the rest of a chromosome, including its genes, telomeres are sequences of DNA — chains of chemical code. Like all DNA, they are made of four nucleic acid bases: G for guanine, A for adenine, T for thymine, and C for cytosine.

Telomeres are made of repeating sequences of TTAGGG on one strand paired with AATCCC on the other strand. Thus, one section of telomere is a “repeat” made of six “base pairs.”

In white blood cells, the length of telomeres ranges from 8,000 base pairs in newborns to 3,000 base pairs in adults and as low as 1,500 in elderly people. (An entire chromosome has about 150 million base pairs.) Each time it divides, an average cell loses 30 to 200 base pairs from the ends of its telomeres.

Cells normally can divide only about 50 to 70 times, with telomeres getting progressively shorter until the cells become senescent or die.

Telomeres do not shorten in tissues where cells do not continually divide, such as heart muscle.

Why do chromosomes have telomeres?

Without telomeres, the main part of the chromosome — the part with genes essential for life — would get shorter each time a cell divides. So telomeres allow cells to divide without losing genes. Cell division is necessary for growing new skin, blood, bone, and other cells.

Without telomeres, chromosome ends could fuse together and corrupt the cell’s genetic blueprint, possibly causing malfunction, cancer, or cell death. Because broken DNA is dangerous, a cell has the ability to sense and repair chromosome damage. Without telomeres, the ends of chromosomes would look like broken DNA, and the cell would try to fix something that wasn’t broken. That also would make them stop dividing and eventually die.

Broken DNA

Why do telomeres get shorter each time a cell divides?

Before a cell can divide, it makes copies of its chromosomes so that both new cells will have identical genetic material. To be copied, a chromosome’s two DNA strands must unwind and separate. An enzyme (DNA polymerase) then reads the existing strands to build two new strands. It begins the process with the help of short pieces of RNA. When each new matching strand is complete, it is a bit shorter than the original strand because of the room needed at the end for this small piece of RNA. It is like someone who paints himself into a corner and cannot paint the corner.

Painted Into Corner

Telomerase counteracts telomere shortening

An enzyme named telomerase adds bases to the ends of telomeres. In young cells, telomerase keeps telomeres from wearing down too much. But as cells divide repeatedly, there is not enough telomerase, so the telomeres grow shorter and the cells age.

Telomerase remains active in sperm and eggs, which are passed from one generation to the next. If reproductive cells did not have telomerase to maintain the length of their telomeres, any organism with such cells would soon go extinct.

TERTStructure of the catalytic subunit of telomerase, TERT. From the Protein Data Bank (PDB entry 3DU5)

Telomeres and aging

Geneticist Richard Cawthon and colleagues at the University of Utah found shorter telomeres are associated with shorter lives. Among people older than 60, those with shorter telomeres were three times more likely to die from heart disease and eight times more likely to die from infectious disease.

While telomere shortening has been linked to the aging process, it is not yet known whether shorter telomeres are just a sign of aging — like gray hair — or actually contribute to aging.

How big is the role of telomeres in aging?

Some long-lived species like humans have telomeres that are much shorter than species like mice, which live only a few years. Nobody knows why. But it’s evidence that telomeres alone do not dictate lifespan.

A major cause of aging is “oxidative stress.” It is the damage to DNA, proteins, and lipids (fats) caused by oxidants, which are highly reactive substances containing oxygen. These oxidants are produced normally when we breathe, and also result from inflammation, infection, and consumption of alcohol and cigarettes. In one study, scientists exposed worms to two substances that neutralize oxidants, and the worms’ lifespan increased an average 44%.

Another factor in aging is “glycation.” It happens when glucose, the main sugar we use as energy, binds to some of our DNA, proteins, and lipids, leaving them unable to do their jobs. The problem becomes worse as we get older, causing body tissues to malfunction, resulting in disease and death. Glycation may explain why studies in laboratory animals indicate that restricting calorie intake extends lifespan.

Most likely oxidative stress, glycation, telomere shortening, and chronological age — along with various genes — all work together to cause aging.

factors in aging

How Can I Lengthen My Telomeres and Slow Aging?

By Dr Axe. Food is Medicine

https://draxe.com/telomeres/

1. Control and Reduce Stress

Chronic stress - Dr. axe

Several studies have linked chronic stress to shorter telomeres. (5) A 2004 study compared healthy women who were mothers of healthy children (the control moms) and those who cared for chronically ill children (caregiving mothers). On average, the caregiving mothers had telomeres that were 10 years shorter than the control moms. (6) That is, their cells behaved as if one decade older.

Another study that examined African-American boys found that those who came from stressful environments had telomeres that were about 40 percent shorter than peers from stable homes. (7)

The takeaway? Chronic stress doesn’t just put you in a bad mood; it contributes to aging in a very real way. Exercising regularly, getting enough sleep and carving out time for yourself daily are all easy ways to help bust stress.

2. Exercise Regularly 

Woman running with dog

From boosting happiness to providing an energy boost, the benefits of exercise are well documented. Now there’s another reason to hit the gym.

A recent study found that a person who did some type of exercise was about 3 percent less likely to have super short telomeres than a person who didn’t exercise at all. (8) Not only that, but themore a person exercised, the longer their telomeres. The correlation between telomere length and exercise activity seemed to be strongest among those in middle age, suggesting that it’s never too late to start a fitness program and keep those telomeres from shortening.

Another study about how exercise keeps your cells young found that middle-aged adults who were intense runners (we’re talking 45–50 miles a week) had telomere lengths that were, on average, 75 percent longer than their sedentary counterparts. Now, this doesn’t mean you need to become an ultramarathon runner. It does, however, suggest that regularly engaging in intense exercise, like HIIT workouts, can keep telomeres long and happy.

3. Eat a Range of Foods for Antioxidant and Vitamin Benefits 

Blueberries - Dr. Axe

Foods high in vitamins are believed to protect cells and their telomeres from oxidative damage. A diet high in antioxidant foods, like berries and artichokes, can slow down aging and help prevent or reduce cell damage.

Additionally, taking a multivitamin supplement to bridge the gap between the foods you’re eating and what your body needs might lengthen telomeres as well. One study found that women who took a daily supplement had telomeres that were about 5 percent longer than nonusers. (9)

But supplements still can’t mimic all the health benefits of eating real, wholesome foods. The same study found that, even after adjusting for supplement use, participants who ate foods high in vitamins C and E also had longer telomeres. Oranges, peppers and kale are among the top vitamin C foods. For vitamin E, turn to almonds, spinach and sweet potatoes.

4. Practice Meditation and Yoga 

Healing prayer - Dr. Axe

It’s time to unroll your mat and unwind. In a 2014 study among breast cancer survivors, those who participated in mindful meditation and practiced yoga kept their telomeres at the same length; the telomeres of the control group, who did neither activity, shortened during the study time. (10)

A 2008 study among men found that, after three months of a vegan diet, aerobic exercise and stress management, including yoga, there was increased telomerase activity. A 2013 follow-up study found that those lifestyle changes are associated with longer telomeres. (11)

Meditation comes in different forms for different people. For me, it’s healing prayer and setting aside time to reflect. For others, it might be setting an intention for their day, attending a regular yoga class or spending time with loved ones without the distraction of technology or work. Whatever your meditation looks like, it’s clear it’s good for our minds and bodies.

While we wait for science to unravel all the mysteries of telomeres and how they work for ­— and against — us, we can make changes to lengthen them and positively affect the rest of our lives.

 

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s